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Abstract. A classical mechanical system is analysed which exhibits complicated scattering 
behaviour. In the set of all incoming asymptotes there is a fractal subset on which the 
scattering angle is singular. Though in the complement of this Cantor set the deflection 
function is regular, one can choose impact parameter intervals leading to arbitrarily 
complicated trajectories. We show how the complicated scattering behaviour is caused by 
unstable periodic orbits having homoclinic and heteroclinic connections. Thereby a hyper- 
bolic invariant set is created leading to horseshoe chaos in the flow. This invariant set 
contains infinitely many unstable localised orbits (periodic and aperiodic ones). The stable 
manifolds of these orbits reach out into the asymptotic region and create the singularities 
of the scattering function. 

1. Introduction 

In a typical scattering event a free particle comes in from infinity, enters the potential 
region and moves in the potential for a finite time. After a while it leaves the potential 
region and goes off to infinity again as a free particle. Complicated motion can occur 
inside the potential region for a finite time only and the motion in the asymptotic 
region is always trivial. Accordingly any typical scattering trajectory is never chaotic, 
because chaoticity implies complicated motion for ever. This argument may lead to 
the erroneous conclusion that scattering systems never show chaotic behaviour and 
that any scattering motion is integrable. 

On the other hand, there are a few observations of complicated (chaotic?) behaviour 
of the outgoing scattering asymptote as a function of the initial conditions. Such 
behaviour has been reported in vortex scattering in fluid dynamics (Eckhardt and Aref 
1987), in classical models of inelastic molecular scattering (Gottdiener 1975, Noid et 
a1 1986), in satellite encounters (Petit and Henon 1986) and in classical potential 
scattering (Eckhardt and Jung 1986). In all these examples a one-dimensional subset 
of initial conditions has been scanned and some property of the final state, plotted as 
a function of the initial state, shows singularities on a whole Cantor set. 

The occurrence of singularities in the scattering angle is well known from orbiting 
in rotationally symmetric potentials (Newton 1982, § 5.4). For each energy in an 
appropriate interval there exists an impact parameter such that the incoming scattering 
trajectory spirals towards an unstable circular orbit and remains there forever. For 
this particular combination of energy and impact parameter the scattering trajectory 
starts on the stable manifold of the periodic orbit. Accordingly for these initial 
conditions the scattering angle is undefined (singular). However, this singularity alone 
does not yet indicate complicated behaviour. For rotationally symmetric potentials 
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the angular momentum is a further conserved quantity, whose existence implies 
integrability of the problem. 

We propose to call a scattering motion complicated (or even chaotic) only if there 
is a fractal set of singularities. In order to obtain a Cantor set of singularities, created 
by a similar mechanism as in orbiting, there must be an uncountable number of unstable 
localised orbits which have influence on the asymptotic region. 

How such a situation can occur has been shown by Churchill et a1 (1979). These 
authors prove that the interplay of several unstable periodic orbits can create horseshoe 
chaos in the Hamiltonian flow on non-compact energy surfaces also, i.e. for unbounded 
motion. As an example for demonstration they use the Henon-Heiles potential (Henon 
and Heiles 1964), which is not a proper scattering problem because the potential does 
not go to 0 if the distance goes to 00. However, their arguments only use the properties 
of the interior part of the potential. Therefore their reasoning can be transferred 
verbatim to any proper scattering potential whose interior part looks similar to the 
interior part of the Henon-Heiles potential. We shall use such a system to show in a 
detailed study how the Cantor set of scattering singularities is created by the heteroclinic 
and homoclinic connections of certain unstable periodic orbits. 

Section 2 presents the Cantor set structure of the singularities of the scattering 
angle as a function of the impact parameter. It gives the plots of several interesting 
scattering trajectories in position space. From these plots the importance of periodic 
orbits becomes evident. 

In § 3 the periodic orbits which create the complicated scattering behaviour are 
identified. We show their stable and unstable manifolds in a PoincarC section and 
show some of their homoclinic and heteroclinic points. In addition we present plots 
of the orbits belonging to some distinguished points in the PoincarC section. 

Section 4 gives a global survey of the singularities of the scattering angle in the 
space of all initial conditions and § 5 contains conclusions and final remarks. 

2. Singularities in the deflection function 

In order to keep things as simple as possible and to be able to show plots of trajectories 
in position space and PoincarC sections we choose a system with two degrees of 
freedom. The two position space coordinates are x and y ,  and the canonically conjugate 
momenta are p x  and p?.  For the Hamiltonian function we take 
H =p:/2+p;,/2+exp[-(x- 1/J212-(y -J#)’] 

+exp[-(x - 1/J212- ( y  +J$)2]+exp[- (x+J2)2  - y 7 .  (1) 
Figure 1 gives some contour lines and the critical points of the potential. The system 
is invariant under rotations by f $T. The potential has seven critical points: one relative 
minimum in Po= (0,O) at energy Eo=0.40.. . ; three saddle points P,,, P s z ,  Ps3 at 
energy E, = 0.45. . . , PSI = (0.6.. . , 0). The coordinates of Psz and Pc3 are obtained by 
rotating P,, around *?IT, and three maxima PMl, P M 2 ,  PM3 at energy EM = 1.005.. . , 
PMl = (-1.4.. . , 0). The coordinates of PM2 and PM3 are obtained by rotating PMl 
around *$IT. 

The straight line asymptotes of the system are labelled by the three quantities E, 
cy, b. E is the energy in the asymptotic region, E = ( p < + p f ) / 2 .  a is the direction 
of the momentum, cy =tan-l(p,./p,). b is the impact parameter, b = 
(xp? - y p , ) / (  ~ : + p : , ) ” ~ .  In the following we denote by d the three-dimensional E / a / b  
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Figure 1. Some contour lines and the critical points of the potential of equation (1 ) .  D is 
a relative minimum, 0 are three saddle points and t are three maxima. 

manifold of all possible incoming asymptotes. The scattering angle 6 is the difference 
between the direction of the outgoing and incoming momenta. 

Figure 2 is a plot of 6 as a function of b in the interval [-3,3] for E = 0.6 and  
a = T. For b outside [-3,3] the incoming projectile misses the region where the 
potential is essentially different from zero and  there is hardly any deflection. In figure 
2 we see four points where 6 changes very rapidly as b varies. Figure 3 shows a 
magnification of the plot in the vicinity of such a point. One of the structures of figure 
2 is resolved into several complicated substructures. In  figure 4 such a substructure 
is magnified further and a set of even smaller substructures becomes visible, which 
looks very similar to the total structure shown in figure 3. Such a magnification can 

-2 0 2 
I m p a c t  porometer 

Figure 2. Scattering angle as a function of impact parameter for energy fixed at E = 0.6 
and incoming direction fixed at a = T. 
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Figure 3. Magnification of figure 2. 
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Figure 4. Magnification of figure 3. 

apparently be repeated any number of times and we always obtain plots that look 
similar. This self-similarity of the structures under magnification is typical for Cantor 
sets. 

In figures 2-4 we have labelled the gaps of the Cantor set by finite sequences of 
the letters R (standing for right) and L (standing for left). The rule for this signature 
is as follows: on the magnification level 1 (see figure 2) we assign the symbol L to the 
gap between -0.49 and -0.35 and the symbol R to the gap between 0.35 and 0.49. 
Under magnification new gaps appear near the ends of the intervals L and R. These 
gaps of level 2 are denoted by sequences of two letters. The first letter is the same as 
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the letter of the nearest gap of level 1. The second letter becomes L or R according 
to whether the gap of level 2 lies to the left or right of the nearest gap of level 1. We 
continue this scheme by induction. The signature for a gap of level n + 1 consists of 
n + l  letters. The first n letters are the signature of the neighbouring gap of level n. 
The last letter is L or R according to whether the new gap lies to the left or right of 
the corresponding interval of the next lower level. The points of the Cantor set itself 
are labelled by infinite L/R sequences such that the symbol sequence of a singular 
point P is the limit of the symbols of a sequence of gaps, which converge to P. As 
we shall see in § 4, this labelling is only valid locally (for some interval in a and E )  
and cannot be continued to all values of a and E in this form. 

A first indication on the origin of the observed fractal structure in the scattering 
singularities can be obtained by looking at some trajectories in position space. Six 
examples are shown in figure 5. In figure 5 ( a )  the scattering trajectory comes in and 
moves along a closed ring trajectory (called r in the following) several times and goes 
off to infinity again. In figure 5 (  b )  the trajectory comes in and starts oscillating between 
two potential mountains. Finally it separates from the oscillating trajectory and moves 
out. 

Figuri 

x coordinate 

5. Six scattering trajectories in position space. The horizontal axis gives x, the 
vertical axis gives y.  All trajectories have energy E =0.6 and incoming direction (I = v. 
The impact parameters and the labels of their intervals are ( a )  b=0.501 92266 
RRLRLRLRLR; ( b )  b = 0.515 1908 E RRRRRR; ( c )  b = 0.515 190 044 9 9 6  RRRRRRLRLR 
LRLR; ( d )  b = 0.513 933 870 501 E RRRLRLLLRLRRRLR; ( e )  b = 0.513 564 345 433 E 

RRRLLLRRRLLLRR; (f) b = 0.497 412 858 02 E RRLLLRRLRRLRLLL. 

There are similar oscillating trajectories between the other two pairs of potential 
mountains. In  the following y I  denotes the oscillating trajectory which passes near 
the saddle point P,,. In figure 5 ( c )  the scattering trajectory first moves along y l ,  then 
switches to r and after a few turns along goes off again. Figure 5 ( d )  shows a 
scattering trajectory which switches periodically between y ,  and r several times before 
it leaves the potential region. In figure 5(e )  the middle part of the trajectory is a 
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sequence of pieces resembling fr  and successive yi in alternation. Figure 5 ( j )  shows 
an irregular switching between pieces of the various periodic orbits. 

To obtain such trajectories, it is necessary to carefully choose b from the very small 
intervals that carry the appropriate L/R signatures given in the figure caption. Figure 
5 strongly suggests that the periodic orbits r, y , ,  y 2 ,  y, and their heteroclinic and 
homoclinic connections have an important influence on the behaviour of the scattering 
trajectories. 

3. Unstable periodic orbits 

The properties of the priodic orbits are best investigated in PoincarC sections. Figure 
6 is a plot in the (x, P . ~ )  surface for E = 0.6, y = 0, p,, > 0. We have marked two fixed 
points A and B, their stable and unstable manifolds, two heteroclinic points C and D, 
and two homoclinic points E and F. In addition there are infinitely many further 
heteroclinic and homoclinic points not marked in figure 6 .  The two periodic orbits in 
position space corresponding to the points A and B are shown in figure 7 ( a ) .  They 
are exactly the orbits r and y , .  Figure 7 ( a )  gives in addition the orbits yz and y3 
which do not cut the plane y=O.  The heteroclinic and homoclinic orbits belonging 
to the points C, D, E, F are shown in figures 7 ( f ) ,  7 ( e ) ,  7(c),  7 ( b ) ,  respectively. 

-0.5 0 0.5 
x coordinate 

Figure 6. Poincart plot in the surface E = 0.6, y = 0, pi > 0. The horizontal axis gives x, 
the vertical axis gives p , .  0 are two fixed points. The curves are parts of their stable and 
unstable manifolds (the complete invariant manifolds wind back and forth in an infinite 
number of tendrils). t are two heteroclinic points and 0 are two homoclinic points. 

The orbit r exists for energies between Eo and EM. At Eo it emerges from the 
point Po. By A , ,  A 2  we denote the eigenvalues of the fixed point in the PoincarC section 
y = 0 belonging to r. At Eo we find A ,  = A 2  = 1 because of the following reason: the 
potential has C3 symmetry. Therefore the expansion of the potential around the point 
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Figure 7. ( a )  The periodic orbits r, y , ,  y z ,  y,. ( b ) ,  (c ) ,  ( e ) ,  (f) Some homoclinic and 
heteroclinic orbits. A, B, C, D, E, F are the points corresponding to the points A, B, C, 
D, E, F in figure 6. ( d )  A typical scattering trajectory is decomposed into ingoing and 
outgoing parts and into oscillating and ring parts in between ( b  = 0.513 58 E RRRLL). The 
broken lines in ( a )  and ( d )  are lines of mirror symmetry of the potential. 

Po = (x, y )  = (0,O) up to second order must be isotropic, i.e. V has an expansion 
V(x, y )  = Eo+ a(x2+y2) /2  plus higher-order terms where a = 6 exp(-2). As long as 
the energy is infinitesimally above Eo the particle starting near (0,O) moves in a 
two-dimensional isotropic oscillator potential. The frequencies of the two normal 
modes are degenerate and all trajectories are periodic and have the same recurrence 
time T =  257lJa. Accordingly for E + Eo from above, all points near the origin in the 
Poincart section become fixed points. Both eigenvalues are one for all these points. 
For increasing E the higher-order terms in the potential become important, the isotropy 
of the potential is destroyed and from the two-dimensional continuum of fixed points 
in the PoincarC section only the fixed point belonging to the periodic trajectory r 
survives. 

With increasing energy r remains at first elliptic. A I  wanders around the upper 
half of the unit circle until at an energy slightly below E, it meets the value -1. Here 
r switches from elliptic to inverse hyperbolic. With further increase of the energy A ,  
wanders along the negative real axis. At E = 0.6, which was used in figures 2-7, its 
value is A ,  = -83. For E + EM we find A I  + -a. 

The orbits y, exist for energies between E, and EM. At E = E, the orbits y ,  emerge 
from the points P,, with eigenvalues p I  = 47. Again, the eigenvalues refer to the 
corresponding fixed points in the Poincark sections. With increasing energy p , increases 
too. At E = 0.6 p ,  = 113 and for E + E M  we find p ,  + 00. The value p l  = 47 at E, can 
be checked analytically. Around PSI the potential can be approximated quadratically 
as V = E, - a ( x  - xS1 )2/2 + by2/2 plus higher-order terms where a = 0.660. . . and 
b = 1.747. . . . Accordingly, for energies slightly above E,, the trajectory yI  has the form 

x(  t )  = x,, y(r)=yocos(vGt+cpo).  

The recurrence time of the orbit is T=2.rr/~’b. Small deviations in the x direction 
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develop like 

x ( t )  -x,, = x+ exp(&t)+x_ exp(-&t). 

During the time T the unstable solution is amplified by the factor e x p ( 2 ~ r m )  = 
47. . . . . 

The existence of heteroclinic and homoclinic points in figure 6 implies the existence 
of a hyperbolic invariant set in the PoincarC map. This in turn proves the existence 
of horseshoe chaos and of non-integrability of the scattering system for energies between 
E ,  and EM (compare the corresponding discussion in 0 7 in Churchill et a1 (1979)). 

The invariant set contains an infinite number of unstable periodic and an infinite 
number of aperiodic points, which do not go off to infinity under iteration of the 
Poincark map. The three-dimensional flow in the energy surface contains the corre- 
sponding unstable periodic and aperiodic localised trajectories. All these trajectories 
have one branch of their stable and unstable manifold reaching out into the asymptotic 
region. Therefore, in the asymptotic region there is an uncountable bundle of stable 
manifolds of localised orbits. Transversal to the sheets of the bundle we find a Cantor 
set structure. Whenever the initial point of a scattering trajectory lies on one of these 
stable manifolds, the trajectory is attracted by a localised orbit and the scattering angle 
is undefined. In this way each localised orbit in the invariant hyperbolic set has an 
influence on the scattering behaviour similar to the influence of a circular periodic 
orbit in the orbiting effect in rotationally symmetric systems. 

If a one-dimensional curve in d is selected, then this curve usually pierces the 
bundle of stable manifolds transversally and the points of intersection are a one- 
dimensional Cantor set along the curve. This gives the fractal structures seen in figures 

The set of singularities is a set of measure zero in d. Therefore we do not hit the 
singularities exactly in numerical computations or in actual scattering experiments. 
What we see is a jump of the scattering angle when the initial condition jumps from 
one side of a stable manifold to the other side. Trajectories belonging to adjacent gaps 
of the Cantor set, having one letter more or one letter less in their L/R signature, leave 
the interior potential region through different saddles and therefore their scattering 
angles differ by approximately *$T.  Actually between these two gaps there is an 
infinite number of additional smaller gaps with longer signatures. Therefore by scan- 
ning b in finer and finer steps through a tiny interval the scattering angle is seen to 
make more and more jumps of approximately * $ T  each time. 

Next we shall show how one can identify the regular intervals with certain classes 
of trajectories in position space. That is, we are looking for a rule relating any finite 
symbol sequence to the qualitative structure of the corresponding orbit and vice versa. 
As we shall see in the next section, it is not possible to assign the L/R signature 
globally in d. As an example we explain how it can be given for trajectories in the 
rightmost singularity structure in figure 2. All these symbol sequences start with RR. 

We decompose a scattering trajectory into incoming and outgoing parts and into 
parts in between which look qualitatively similar to one third of r or one half of yi. 
Let us consider, for example, the trajectory shown in figure 7 ( d ) .  The part of the 
trajectory up to the point R is the incoming part. I t  is similar for all trajectories starting 
in impact parameter intervals having signatures beginning with RR (compare with 
figure 5 ) .  The next part between points R and S is qualitatively similar to i y , ,  the part 
between S and T has the qualitative structure of $, and then comes a part similar to 
&y3 and finally the outgoing part. The symmetry lines of the potential shown as broken 

2-4. 
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lines help to make the decomposition. Now, the relation between signature and  
trajectory structure is the following. 

By S, we denote the symbol in position number n in the sequence. RR in position 
1 and 2 gives an  incoming part of the kind shown in figure 7 ( d ) .  If the next symbol 
S , + ,  is equal to S,  then we add an  arc qualitatively similar to one of the i y ,  (like RS 
in figure 7(  d ) ) .  Out of the six possibilities for i y i  we choose that one which continues 
the trajectory smoothly. Likewise, if Sn+l  # S, ,  then we add an  arc qualitatively similar 
to $ with the appropriate orientation, to end up on a symmetry line again. If all 
symbols of the finite sequence are used up, we add an outgoing part, leaving the 
interior of the potential region through the pass opposite to the sector into which the 
trajectory has to be continued smoothly. This rule can be checked immediately for all 
six trajectories shown in figure 5 .  If any type of trajectory is wanted, we decompose 
it into r and y parts, construct the corresponding L/R signature and know in which 
b interval the trajectory has to start. 

For trajectories belonging to b intervals, whose symbol sequence does not start 
with RR, similar rules can be given with some modifications for symbols in the first 
three positions. There are no global rules for the connection between gaps in the 
Cantor set and  symbol sequences and the trajectory structure, because different gaps 
in the one-dimensional Cantor set can be connected without crossing the Cantor set 
itself by changing a a n d / o r  E in addition to changing b. Such multiparameter changes 
affect the front parts of the trajectories with corresponding additions or deletions of 
symbols in the signature. 

The value of A I  and p ,  can be used to give approximately the scaling law of the 
Cantor set shown in figures 2-4. Adding L or R to the signature of an interval 
corresponds to adding $ or i y ,  to the interior part of the orbit. In order to stay for 
an additional third or half revolution on the unstable periodic orbit r or y the precision 
of the initial impact parameter must be increased by a factor lh,11’3 or p;”, respectively. 
These numbers also give the relation between the lengths of intervals having one digit 
more or less in their signatures. For example, in figure 4 we measure 

length(RLLRL)/length(RLLR)=0.21.. .= Ih,(E =0.6)1-1’3 

length(RLLRR)/length(RLLR) = 0.10. . . = (pl(  E = 0.6))-”2, 

4. Global structure of the scattering singularities 

An incoming scattering asymptote is labelled by the three quantities E, a, b. Therefore 
d is a three-dimensional manifold. Let Y be the subset of d, which leads to singularities 
of the scattering angle, i.e. Y is the set of incoming asymptotes which lie on the stable 
manifold of localised orbits. In this section we give a graphical representation of this 
set. Figures 8 and 9 show the intersection of Y with different planes of d. In figure 
8 we see the singularities emerging from the saddle points at energy E,  and disappearing 
in the mountain tops at energy EM. For energies outside the interval [ E , ,  EM] there 
are no invariant manifolds of unstable periodic orbits reaching out into the asymptotic 
region. Accordingly there are no singularities of the scattering outside [ E , ,  E M ] .  Figure 
9 gives several slices through Y in ( a ,  b )  planes with E = constant. It clearly shows 
how the gaps in the one-dimensional Cantor sets along lines a = constant are connected 
in higher dimensions. Accordingly, the labelling of the gaps of the one-dimensional 
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Figure 8. Cantor set of singularities of the scattering angle in the E / b  plane for a = x. 
The horizontal axis gives b, the vertical axis E. 

Impact parometer 

Figure 9. Cantor set of singularities of the scattering angle in the a / b  plane for several 
values of E = 0.5 ( a  j, 0.55 ( b ) ,  0.6 ( c j ,  0.7 ( d  j, 0.8 ( e ) ,  1.0 (f). The horizontal axis gives 
b, the vertical axis a in the interval [3x , !n ] .  It looks the same in  intervals shifted by *:n. 

Cantor set by symbol sequences, as done in § 2, is only valid along particular one- 
dimensional lines. In this sense any rule for the connection between L /R  signatures 
and  the qualitative structure of the trajectories is only valid locally. 

5. Conclusions 

This paper illustrates how a Hamiltonian flow can become chaotic on  non-compact 
energy surfaces, i.e. in scattering systems. The chaos shows up in Cantor sets of 
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singularities of the scattering angle as a function of the initial conditions. The proof 
of non-integrability of the Henon-Heiles system given by Churchill er a1 (1979) can 
be carried over exactly to our system. Thereby it becomes evident that no additional 
global conserved quantity exists on energy surfaces with energy between E,  and EM.  

Similar chaotic behaviour of scattering systems should be expected in all potentials 
having several relative maxima and some saddle points in between, such that there 
are several unstable periodic orbits having heteroclinic and homoclinic connections. 
We have checked some other potential models and have found fractal structures in 
the scattering singularities in those systems, which fulfil the above-mentioned criteria. 

Can the singularities have some influence on a real scattering experiment? In an 
actual scattering experiment E and a are held fixed and a broad stream of particles, 
having different values of b, is sent towards the target. The number of particles going 
off in various final directions is monitored. Accordingly, the differential cross section 
contains a summation over all contributing impact parameters. By this summation the 
effects of singularities may be smeared out. 

If real experiments are done on microscopic systems, e.g. scattering of atoms or 
electrons from triangular or triatomic molecules, then quantum effects must be taken 
into account. They have the tendency to wash out effects of classical singularities 
further. We would expect to see a superposition of an  infinite number of structures 
as they appear in orbiting scattering in rotationally symmetric systems. For a discussion 
of the connection between classical and quantum orbiting scattering see Korsch and 
Thylwe (1983). We consider it to be worth investigating whether any visible effect of 
the singularities is left over after this averaging. 
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